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Based on the piezoelectric e!ect and the wave equation, the coupled vibration of
the piezoelectric ceramic thick disk resonator is studied when the shearing and
torsion are neglected. The coupled vibration of the disk resonator is reduced to two
equivalent vibrations, one being the equivalent radial vibration, and the other the
equivalent longitudinal vibration. The relation between these two equivalent
extensional vibrations is analyzed and the two-dimensional equivalent circuit of
the thick disk resonator is derived. Compared with one-dimensional theory, an
additional force is produced in the two-dimensional equivalent circuit. It is obvious
that this force results from the coupling between the radial and longitudinal
vibrations in the thick disk. It is shown theoretically that the resonance frequency
of the thick disk in coupled vibration can be computed in an analytical method,
and the measured resonance frequencies are in good agreement with the computed
results.

( 2000 Academic Press
1. INTRODUCTION

Piezoelectric ceramic devices are widely used as transducers in applications from
telephone speakers to sonar arrays. In many traditional applications, the
piezoelectric ceramic materials can be manufactured in a variety of geometrical
shapes and have been used as ultrasonic transducers, "lters, oscillators and
transmitters. In these applications, the fundamental vibrational modes are
thickness extensional vibrational mode, plane radial vibrational mode, and length
extensional vibrational mode and shear vibrational mode [1]. For these vibrational
modes, traditional analysis theory is one-dimensional, and therefore, certain
condition is required for the geometrical shapes of the devices. For example, for the
plane radial vibration and the thickness extensional vibration, the thickness of the
resonator must be much smaller than its radius; while for the longitudinal vibration
of a piezoelectric ceramic rod, its length must be much larger than the radius.
However, in practical cases, the geometrical dimensions of the devices are limited,
the vibration of the piezoelectric ceramic resonator is not an ideal one-dimensional
vibration, and the coupling between the longitudinal and the lateral vibrations
must be considered. In this case, one-dimensional analysis theory should not be
0022-460X/00/120277#14 $35.00/0 ( 2000 Academic Press
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used. The solution to this problem is that numerical methods should be used, or the
traditional one-dimensional theory may be improved.

To analyze the vibrational characteristics of piezoelectric ceramic resonators of
"nite dimensions, numerical methods such as the "nite element method have been
employed [4}8]. However, to model the resonator in coupled vibration, the main
drawback is generally the large size of the numerical problem. In our previous
work, the coupled vibration of the piezoelectric ceramic circular resonator was
analyzed using an approximate numerical method [9]. In this paper, the coupled
vibration of the piezoelectric ceramic disk resonator is studied using a kind of
improved analytical method and the equivalent circuit is derived. The basic
concepts of this improved analytical method are as follows. When a piezoelectric
ceramic disk resonator of "nite dimension is excited by an external electric "eld, the
coupled vibration of the resonator is assumed to be divided into two equivalent
vibrations, one being the extensional vibration in the thickness direction, the other
the radial vibration in the radial direction. However, these two equivalent
vibrations are not independent of each other; they are correlated by a mechanical
coupling coe$cient. In this method, since the direction of the external exciting
electric "eld is parallel to the polarization direction of the piezoelectric ceramic
circular disk, the shearing strain and torsion in the resonator are ignored. By this
method, the equivalent circuit of the disk resonator in coupled vibration is
analyzed, and the resonance frequency equations are derived based on the
developed equivalent circuit.

2. ANALYSIS OF THE EQUIVALENT CIRCUITS OF THE DISK RESONATOR
IN COUPLED VIBRATION

A geometrical diagram of the piezoelectric ceramic disk resonator with
electrodes on its two end surfaces is shown in Figure 1. The thickness and radius of
the resonator are l and a. When an external alternating electric "eld is applied to
the resonator in the thickness direction, the resonator will vibrate. In this case, since
the direction of the external exciting electric "eld is parallel to the polarization
direction of the piezoelectric ceramic circular disk, the vibration is mainly a coupled
one of two extensional vibrations; the torsion and shearing strain may be ignored.
In Figure 1, F
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two ends and the side. In cylindrical co-ordinates, the piezoelectric and wave
equations for the axial symmetrical coupled vibration of the resonator are as
follows:
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Figure 1. A geometrical diagram of the piezoelectric ceramic disk resonator in coupled vibration.
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Here, S
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and ¹
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are the strains and stresses in the radial, tangential
and longitudinal directions, s
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(i, j"1, 2, 3) the elastic complaint coe$cients in
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displacements. Since the edge e!ect of the electric "eld and the shearing strain and
stress are ignored, ¹
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can be ignored, and the

expressions of LD
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/Lr"0 are applicable to this case. On the other

hand, as the extensional vibration in the resonator is predominant, the shear and
torsion can be ignored, and therefore, the tangential displacement ;h is also
ignored. The relation between the strain and displacement is
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2.1. EQUIVALENT CIRCUIT OF THE EQUIVALENT RADIAL VIBRATION OF THE RESONATOR
IN COUPLED VIBRATION

From equations (1) and (2), the following can be obtained:
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Let n"¹
z
/(¹

r
#¹h ); n is de"ned as the mechanical coupling coe$cient between

di!erent vibrational modes. Equation (9) can be rewritten as
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From equation (8) and (10), we have
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is called the equivalent elastic constant in radial vibration. For harmonic vibration,
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From Figure 1, the radial velocity of the resonator on the side is v
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Let F
ra

be the external force on the side of the resonator; we have
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resonator, the voltage and current of the resonator are as follows:
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Substituting equation (11) into equation (22) and combining equation (17) yield
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Substituting equation (23) into equation (22) and combining equation (7) yield
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mechanical conversion coe$cient in coupled vibration, equation (24) can be
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Figure 2. The equivalent circuit of the equivalent radial vibration of the resonator in coupled
vibration.
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Substituting equation (20) and the expression of N
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From equations (25) and (27), the radial equivalent circuit of the resonator in
coupled vibration can be obtained as shown in Figure 2. Compared with the
traditional equivalent circuit of the thin piezoelectric ceramic disk in plane radial
vibration, the di!erence is that for the coupled vibration, an additional force is
created in the equivalent circuit. It is obvious that when the thickness of the
resonator is much smaller than the radius, the mechanical coupling coe$cient is
very small, and the additional force can be ignored. The equivalent circuit of the
resonator in coupled vibration can be reduced to the traditional one.

2.2. THE EQUIVALENT CIRCUIT OF THE EQUIVALENT THICKNESS VIBRATION
OF THE RESONATOR IN COUPLED VIBRATION

From equations (3) and (4), we have
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Substituting equation (29) into (28) yields
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of the slender piezoelectric ceramic rod in longitudinal vibration. Substituting
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From equation (34), the velocity of the resonator in thickness direction can be
derived:
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From Figure 1, using equation (35), we have

v
31
"v

z
(z"0)"juB

z
exp( jut), (36)

v
32
"!v

z
(z"l )"! ju[A

z
sin (k

z
l )#B

z
cos(k

z
l )]exp ( jut). (37)

From the above equations, the constants can be obtained:

A
z
"!

1
ju

]C
v
31

tan (k
z
l )
#

v
32

sin (k
z
l)D exp(!jut), (38)

B
z
"

v
31
ju

exp(!jut). (39)



284 L. SHUYU
Substituting equations (38) and (39) into equation (30) yields
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From Figure 1, the external forces can be expressed as
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The voltage and current of the resonator in thickness vibration can be obtained:
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resonator in coupled vibration. From the above analysis, equations (41) and (42)



Figure 3. The equivalent circuit of the equivalent thickness vibration of the resonator in coupled
vibration.
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can be rewritten as
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are caused by the coupling between the radial and thickness vibrations

in the disk resonator. From equations (46)}(48), the equivalent circuit of the
equivalent thickness vibration in coupled vibration can be obtained as shown in
Figure 3. In the "gure, Z
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seen that it is di!erent from the traditional one-dimensional equivalent circuit of
a slender piezoelectric ceramic rod and an additional capacitance is created. The
additional capacitance has resulted from the coupling between the longitudinal and
the radial vibrations in the resonator.

2.3. THE EQUIVALENT CIRCUIT OF THE RESONATOR IN COUPLED VIBRATION

In general cases, the resonator is excited by an external alternating electric signal.
Let the voltage and current of the resonator in coupled vibration be <

3
and I

3
.



Figure 4. The equivalent circuit of the disk resonator in coupled vibration.
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From the above analysis, the following relations can be obtained:
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Combining the above analysis and results with equations (49) and (50), the
equivalent circuit of the resonator in coupled vibration can be derived as shown in
Figure 4.

3. THE RESONANCE FREQUENCY EQUATIONS OF THE DISK RESONATOR
IN COUPLED VIBRATION

To analyze the frequency characteristics of the disk resonator in coupled
vibration, the frequency equation of the resonator must be derived. From Figure 4,
when the resonator vibrates freely, the external forces can be ignored. The
admittance of the resonator in coupled vibration can be obtained:
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Here, >
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are the equivalent electric admittances of the resonator in
equivalent radial and thickness vibrations respectively. Their expressions are as
follows:
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plane electro-mechanical coupling coe$cient of the piezoelectric ceramic disk
resonator in coupled vibration. It can be rewritten as
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When the admittance of the resonator has a maximal value, the resonator will
resonate. Therefore, the resonance frequency equations for the resonator in coupled
vibration can be obtained from equations (52) and (53):
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In equations (56) and (57), there are two unknowns: the mechanical coupling
coe$cient and the angular frequency. When the material parameters and the
dimensions of the resonator are given, the resonance frequency of the resonator in
coupled vibration can be computed from these two equations. However, since
equations (56) and (57) are transcedental equations, it is impossible to "nd the
analytic solutions. Therefore, numerical methods must be used. In solving these two
transcedental equations, it can be found that for certain vibrational mode (for
fundamental mode, the "rst roots of equations (56) and (57) are used), there exist
two sets of solutions, i.e., two resonance frequencies can be found. Considering that
the coupled vibration of the resonator includes two vibrational modes, it is obvious
that these two frequencies are the resonance frequencies of the resonator in
longitudinal and radial vibrations. One is the "rst longitudinal-dominating coupled
mode, and the other is the "rst radial-dominating coupled mode. It can be seen that
these two resonance frequencies are di!erent from those calculated from the
one-dimensional theory for the resonator in longitudinal or radial vibrational
mode. The reason is that in this paper the interaction between the longitudinal and
radial vibrations is considered. It can also be seen that when the geometrical
dimensions of the resonator satisfy certain conditions (for example, when the
thickness l is much larger or smaller than its radius a), the interaction can be



288 L. SHUYU
ignored, and the results from equations (56) and (57) are the same as those from
one-dimensional theory.

For solving equations (56) and (57), the following procedures are used. First, an
arbitrary value of the mechanical coupling coe$cient is given, and then two
frequencies can be found from equations (56) and (57). Second, the value of the
mechanical coupling coe$cient is changed until the two frequencies from the
frequency equations (56) and (57) are equal to each other. In this case, the frequency
and the mechanical coupling coe$cient are the solutions of the frequency
equations. By means of this method, the resonance frequencies corresponding to
di!erent vibrational modes of piezoelectric ceramic circular disk resonators in
coupled vibration can be found.

4. EXPERIMENT

The resonance frequency of the piezoelectric ceramic disk resonator is measured
to test and verify the proposed theory for the analysis of the disk resonator in
coupled vibration. The experimental method used is the traditional transmission
line method that is widely used in the performance measurement of the piezoelectric
ceramic devices. The input sine electric signal applied to the resonator is small and
so no non-linear e!ect is created in the resonator. The material of the piezoelectric
ceramic disk resonator is an equivalent of PZT-4. In the computation of the
resonance frequency of the resonator, the standard material parameters are used.
The computed and measured results are listed in Table 1, where f

r
and f

z
are the

computed resonance frequencies of the disk resonator in coupled fundamental
vibrational mode. For comparison, the fundamental resonance frequencies f

1r
and

f
1z

of the disk resonator in thickness extensional and radial vibrations computed
from one-dimensional theory are also shown in Table 1; f

rm
and f

zm
are the

measured results. It can be seen that the measured frequencies are in good
agreement with the computed results, and the results from the theory of coupled
vibration are in better agreement with the measured results than those from
one-dimensional theory. From Table 1, it can be seen that the computed resonance
frequency f

r
for the radial-dominating coupled mode is lower than the computed

resonance frequency f
1r

for the plane radial vibration of the thin disk resonator,
while the computed resonance frequency f

z
for the longitudinal-dominating

coupled mode is higher than the computed resonance frequency f
1z

for the
one-dimensional longitudinal vibration of a slender piezoelectric ceramic rod. This
TABLE 1

¹he measured resonance frequencies of the piezoelectric ceramic disk resonators

1 (mm) a (mm) f
1r

(kHz) f
1z

(kHz) f
r
(kHz) f

z
(kHz) f

rm
(kHz) f

zm
(kHz)

5 30 38)24 402)25 38)08 415)27 37)01 419)22
6 30 38)24 335)19 38)04 346)26 36)95 341)62
8 30 38)24 251)39 37)90 260)51 36)63 264)33
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can be explained as follows. First, for the plane radial vibration of a thin disk, its
circumferential boundary is free from external force. When its thickness is
increased, the coupled vibration is created, the energy for the longitudinal vibration
is introduced, and the resonance frequency for the radial-dominating coupled
vibration mode is decreased. Second, for the ideal thickness vibration of a think
disk resonator, its circimferential boundary is clamped, the radial strain is zero,
while the longitudinal strain has a certain value. This implies theoretically that the
lateral dimension of the resonator is very large, and the mass of the resonator
also has a maximal value. When the thickness of the resonator is increased, the
coupled vibration is produced, and the condition of clamped boundary is no longer
suitable for the resonator. Compared with the ideal thickness vibration of a
thin disk resonator whose mass has a maximal value, the mass of the resonator
in coupled vibration will decrease. Therefore, the resonance frequency for the
longitudinal-dominating coupled mode is increased as compared with results of the
one-dimensional theory.

In this paper, the fundamental vibrational mode of piezoelectric ceramic circular
disk in coupled vibration is studied. The reason is that in most cases the
fundamental mode of piezoelectric vibrators is widely used. It has high
electro-mechanical coupling e$cient, sensitivity, and low loss. As for the higher
vibrational modes, the analysis is similar to that described in the above sections.
For example, for the second vibrational mode, the second roots of equations (56)
and (57) must "rst be found. Then the resonance frequency for the second
vibrational mode of the disk resonator can be computed. However, the analysis for
the high vibrational modes is complex. The reason is that the modal interaction
must be considered. For example, for the second vibrational mode, the interaction
between the radial vibration of order one and the thickness vibration of order two,
the interaction between the thickness vibration of order one and the radial
vibration of order two, and the interaction between the radial vibration of order
two and the thickness vibration of order two must be analyzed at the same time.

As for the frequency error, it is considered that the following factors should be
taken into account: (1) The standard material parameters is di!erent from the
practical values. An error of 3}5% can be caused by this factor. (2) To simplify the
analysis, the mechanical coupling coe$cient is considered as a constant. However,
the mechanical coupling coe$cient is di!erent at di!erent positions in the
resonator. (3) The longitudinal and radial extensional vibrations in the resonator
are assumed. However, when the disk resonator is a short cylinder or a think disk,
shearing and other strains may exist in the resonator. (4) The analytical method
presented in this paper is an approximate one.

5. CONCLUSIONS

In this paper, the coupled vibration of a piezoelectric ceramic disk resonator is
studied. An approximate analytic method is developed to analyze the complex
coupled vibration, and the equivalent circuit for the disk resonator in
coupled vibration is obtained. From the above analysis, the following conclusions
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can be drawn:

(1) When the mechanical coupling coe$cient is introduced, the complex coupled
vibration of the disk resonator can be divided into two equivalent extensional
vibrations: one is the longitudinal vibration, and the other is the plane radial
vibration. However, these two vibrations are not independent of each other.

(2) The equivalent circuit for the disk resonator in coupled vibration is derived.
An additional force is produced in the equivalent circuit, and this is di!erent
from the traditional result according to one-dimensional theory.

(3) The resonance frequency equations for the disk resonator in coupled
vibration are obtained. Two resonance frequencies of the resonator in
coupled vibration can be obtained from the theory of this paper in an
analytical method. These two frequencies correspond to the coupled
longitudinal and radial vibrations in the resonator.

(4) The coupled vibration of a disk resonator is complex. Apart from the
fundamental mode and the higher modes, there exist vibrations in di!erent
directions and their interaction. For example, for the fundamental mode,
there are two vibrations, one being the equivalent radial vibration, and the
other the equivalent longitudinal vibration.

(5) The present method in this paper is an approximate method. It neglects the
shearing and torsional strains. On the other hand, the mechanical coupling
coe$cient is considered as a constant for a certain vibrational mode.

(6) The method presented in this paper can be used to analyze and compute the
resonance frequency of the piezoelectric ceramic disk resonators in coupled
longitudinal and radial vibration. The coupled mode shapes cannot be
calculated using this method. However, numerical methods such as the "nite
element method can be used to accomplish this task.
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